Cytotoxicity and terminal differentiation of human oral keratinocyte by indium ions from a silver-palladium-gold-indium dental alloy

Dent Mater. 2015 Feb;31(2):123-33. doi: 10.1016/j.dental.2014.11.006. Epub 2014 Dec 8.

Abstract

Objective: Dental alloys containing indium (In) have been used in dental restoration for two decades; however, no study has investigated the biological effects of In ions, which may be released in the oral cavity, on human oral keratinocytes. The objective of the present study was to investigate the biological effects of In ions on human oral keratinocyte after confirming their release from a silver-palladium-gold-indium (Ag-Pd-Au-In) dental alloy.

Methods: As a corrosion assay, a static immersion tests were performed by detecting the released ions in the corrosion solution from the Ag-Pd-Au-In dental alloy using inductively coupled plasma atomic emission spectroscopy. The cytotoxicity and biological effects of In ions were then studied with In compounds in three human oral keratinocyte cell lines: immortalized human oral keratinocyte (IHOK), HSC-2, and SCC-15.

Results: Higher concentrations of In and Cu ions were detected in Ag-Pd-Au-In (P<0.05) than in Ag-Pd-Au, and AgCl deposition occurred on the surface of Ag-Pd-Au-In after a 7-day corrosion test due to its low corrosion resistance. At high concentrations, In ions induced cytotoxicity; however, at low concentrations (∼0.8In(3+)mM), terminal differentiation was observed in human oral keratinocytes. Intracellular ROS was revealed to be a key component of In-induced terminal differentiation.

Significance: In ions were released from dental alloys containing In, and high concentrations of In ions resulted in cytotoxicity, whereas low concentrations induced the terminal differentiation of human oral keratinocytes via increased intracellular ROS. Therefore, dental alloys containing In must be biologically evaluated for their safe use.

Keywords: Corrosion resistance; Cytotoxicity; Human oral keratinocytes; Indium ions; Silver–palladium–gold–indium dental alloy; Terminal differentiation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blotting, Western
  • Cell Differentiation / drug effects*
  • Corrosion
  • Dental Alloys / chemistry*
  • Electrochemical Techniques
  • Enzyme-Linked Immunosorbent Assay
  • ErbB Receptors / metabolism
  • Fibronectins / metabolism
  • Gold Alloys / chemistry
  • Humans
  • Indium / chemistry
  • Ions
  • Keratinocytes / drug effects*
  • Keratinocytes / metabolism
  • Keratins / metabolism
  • Materials Testing
  • Palladium / chemistry
  • Protein Precursors / metabolism
  • Reactive Oxygen Species / metabolism
  • Silver / chemistry
  • Spectrophotometry, Atomic
  • X-Ray Diffraction

Substances

  • Dental Alloys
  • Fibronectins
  • Gold Alloys
  • Ions
  • Protein Precursors
  • Reactive Oxygen Species
  • Indium
  • Silver
  • Palladium
  • involucrin
  • Keratins
  • ErbB Receptors