Two base-mediated cascade rearrangement reactions of diallyl ethers were developed leading to selective [2,3]-Wittig-oxy-Cope and isomerization-Claisen rearrangements. Both diaryl and arylsilyl-substituted 1,3-substituted propenyl substrates were examined, and each exhibits unique reactivity and different reaction pathways. Detailed mechanistic and computational analysis was conducted, which demonstrated that the role of the base and solvent was key to the reactivity and selectivity observed. Crossover experiments also suggest that these reactions proceed with a certain degree of dissociation, and the mechanistic pathway is highly complex with multiple competing routes.