Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage

Nanoscale. 2015 Feb 7;7(5):1791-5. doi: 10.1039/c4nr05878j.

Abstract

Biomass-derived carbon materials, as one type of promising anode material for lithium ion batteries (LIBs), have demonstrated intrinsic potential and superiority. Here, we report a facile and efficient approach to fabricate micro-sized porous carbon spheres (PCSs) by an integrated procedure of enzymolysis, pre-oxidation, and carbonization. Benefiting from the uniquely abundant pore accessiblity, the PCSs exhibit an ultra-high rate capability with a value of 150 mA h g(-1) at an ultrafast charge/discharge current density of 20 A g(-1), and they take only ca. 27 s to be fully charged. It is believed that the uniquely porous structure can shorten the transport paths and further enhance the rapid transport of the electrolytes and Li ions on the surface and within the electrode materials. The low cost and easy large-scale preparation of the PCS electrodes, as well as the superior high rate capability would open up an opportunity to develop high rate lithium ion batteries.

Publication types

  • Research Support, Non-U.S. Gov't