Aims: Single-source, dual-energy coronary computed tomography angiography (CCTA) with monochromatic image reconstruction allows significant noise reduction. The aim of the study was to evaluate the impact of monochromatic CCTA image reconstruction on coronary stent imaging, as the latter is known to be affected by artefacts from highly attenuating strut material resulting in artificial luminal narrowing.
Methods and results: Twenty-one patients with 62 stents underwent invasive coronary angiography and single-source, dual-energy CCTA after stent implantation. Standard polychromatic images as well as eight monochromatic series (50, 60, 70, 80, 90, 100, 120, and 140 keV) were reconstructed for each CCTA. Signal and noise were measured within the stent lumen and in the aortic root. Mean in-stent luminal diameter was assessed in all CCTA reconstructions and compared with quantitative invasive coronary angiography (QCA). Luminal attenuation was higher in the stent than in the aortic root throughout all monochromatic reconstructions (P < 0.001). An increase in monochromatic energy was associated with a decrease in luminal attenuation values (P < 0.001). The mean in-stent luminal diameter underestimation by monochromatic CCTA compared with QCA was 90% at low monochromatic energy (50 keV) and improved to 37% at high monochromatic (140 keV) reconstruction while stent diameter was underestimated by 39% with standard CCTA.
Conclusion: Monochromatic CCTA can be used reliably in patients with coronary stents. However, reconstructions with energies below 80 keV are not recommended as the blooming artefacts are most pronounced at such low energies, resulting in up to 90% stent diameter underestimation.
Keywords: Gemstone Spectral Imaging; single-source dual-energy CCTA; stent imaging.
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: [email protected].