Neuromyelitis optica (NMO) is a rare inflammatory disorder of the central nervous system affecting mostly the optic nerve and the spinal cord. These last few years have been characterized by a dramatic improvement of NMO knowledge and care. A unique feature of NMO is the presence of autoantibodies directed against aquaporin-4 (AQP4-Ab). Identification of this biomarker has enlarged the clinical spectrum of the disease to a broad variety of symptoms and syndromes including brain, brainstem and hypothalamus involvement. This modifies the acknowledged definition of NMO, switching from a clinical phenotype to a biological one and introducing the concept of "aquaporinopathy" or "autoimmune AQP4 channelopathy". AQP4-Ab plays an important role in NMO pathophysiology. In vitro and ex vivo experiments showed that AQP4-Ab can induce either direct astrocyte loss through complement activation (neuroinflammation) or astrocyte changes via internalization of AQP4 (neuromodulation). Recently, T cell involvement in NMO has been suggested. Based on relatively small retrospective and prospective case series, several treatments appear to be likely effective in preventing attacks and stabilizing disability in NMO patients. Relapse prevention in NMO is based on early and maintenance immunosuppressive treatments. Considering the antibody-driven hypothesis, treatment should target B-cells. MS-approved therapies are not currently recommended for NMO patients, several series suggesting poor efficacy or harmful effects. Despite recent improvement of the detection method, some patients remain seronegative for AQP4-Ab. This group expresses specific demographic and disease-related features different for AQP4-Ab positive ones. This raises the question of the place of seronegative AQP4-Ab NMO patients in the spectrum, of their intimate physiopathology and finally of the therapeutic strategy to adopt in such patients.
Copyright © 2014 Elsevier Masson SAS. All rights reserved.