Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma

Neuro Oncol. 2015 May;17(5):757-63. doi: 10.1093/neuonc/nou316. Epub 2014 Dec 23.

Abstract

Background: We sought to assess the impact of amino-acid (18)F-fluoro-ethyl-tyrosine (FET) positron emission tomography (PET) on the volumetric target definition for radiation therapy of high-grade glioma versus the current standard using MRI alone. Specifically, we investigated the influence of tumor grade, MR-defined tumor volume, and the extent of surgical resection on PET positivity.

Methods: Fifty-four consecutive high-grade glioma patients (World Health Organization grades III-IV) with confirmed histology were scanned using FET-PET/CT and T1 and T2/fluid attenuated inversion recovery MRI. Gross tumor volume and clinical target volumes (CTVs) were defined in a blinded fashion based on MRI and subsequently PET, and volumetric analysis was performed. The extent of the surgical resection was reviewed using postoperative MRI.

Results: Overall, for ∼ 90% of the patients, the PET-positive volumes were encompassed by T1 MRI with contrast-defined tumor plus a 20-mm margin. The tumor volume defined by PET was larger for glioma grade IV (P < .001) and smaller for patients with more extensive surgical resection (P = .004). The margin required to be added to the MRI-defined tumor in order to fully encompass the FET-PET positive volume tended to be larger for grade IV tumors (P = .018).

Conclusion: With an unchanged CTV margin and by including FET-PET for gross tumor volume definition, the CTV will increase moderately for most patients, and quite substantially for a minority of patients. Patients with grade IV glioma were found to be the primary candidates for PET-guided radiation therapy planning.

Keywords: FET-PET; MRI; glioma; radiation therapy; target definition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Brain Neoplasms / diagnostic imaging*
  • Brain Neoplasms / pathology
  • Brain Neoplasms / radiotherapy*
  • Glioma / diagnostic imaging*
  • Glioma / pathology
  • Glioma / radiotherapy*
  • Humans
  • Magnetic Resonance Imaging
  • Middle Aged
  • Neoplasm Grading
  • Positron-Emission Tomography
  • Tyrosine / analogs & derivatives
  • Young Adult

Substances

  • O-(2-fluoroethyl)tyrosine
  • Tyrosine