Slow waves (slow wavesICC) were recorded from myenteric interstitial cells of Cajal (ICC-MY) in situ in the rabbit small intestine, and their properties were compared with those of mouse small intestine. Rabbit slow wavesICC consisted of an upstroke depolarization followed by a distinct plateau component. Ni(2+) and nominally Ca(2+)-free solutions reduced the rate-of-rise and amplitude of the upstroke depolarization. Replacement of Ca(2+) with Sr(2+) enhanced the upstroke component but decreased the plateau component of rabbit slow wavesICC. In contrast, replacing Ca(2+) with Sr(2+) decreased both components of mouse slow wavesICC. The plateau component of rabbit slow wavesICC was inhibited in low-extracellular-Cl(-)-concentration (low-[Cl(-)]o) solutions and by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of Cl(-) channels, cyclopiazonic acid (CPA), an inhibitor of internal Ca(2+) pumps, or bumetanide, an inhibitor of Na(+)-K(+)-2Cl(-) cotransporter (NKCC1). Bumetanide also inhibited the plateau component of mouse slow wavesICC. NKCC1-like immunoreactivity was observed mainly in ICC-MY in the rabbit small intestine. Membrane depolarization with a high-K(+) solution reduced the upstroke component of rabbit slow wavesICC. In cells depolarized with elevated external K(+), DIDS, CPA, and bumetanide blocked slow wavesICC. These results suggest that the upstroke component of rabbit slow wavesICC is partially mediated by voltage-dependent Ca(2+) influx, whereas the plateau component is dependent on Ca(2+)-activated Cl(-) efflux. NKCC1 is likely to be responsible for Cl(-) accumulation in ICC-MY. The results also suggest that the mechanism of the upstroke component differs in rabbit and mouse slow wavesICC in the small intestine.
Keywords: NKCC1; interstitial cells of Cajal; pacemaker; slow wave; small intestine.
Copyright © 2015 the American Physiological Society.