In this work, two high-performance liquid chromatography (HPLC) assays were developed and validated for the independent determination of edaravone and taurine using 3-methyl-1-p-tolyl-5-pyrazolone and L-glutamine as internal standards. In in vitro experiments, human plasma was separately spiked with a mixture of edaravone and taurine, edaravone or taurine alone. Plasma was precipitated with acetonitrile containing 0.1% formic acid. Ultrafiltration was employed to obtain the unbound ingredients of the two drugs. The factors that might influence the ultrafiltration effiency were elaborately optimized. Plasma supernatant and ultrafiltrate containing taurine were derivated with o-phthalaldehyde and ethanethiol in the presence of 40 mmol/L sodium borate buffer (pH 10.2) at room temperature within 1 min. Chromatographic separations were achieved on an InertSustain C18 column (250 × 4.6 mm, 5 µm). Isocratic 50 mmol/L ammonium acetate-acetonitrile and gradient 50 mmol/L sodium acetate (pH 5.3)-methanol were respectively selected as the mobile phase for the determination of edaravone and taurine. All of the validation data including linearity, extraction recovery, precision, accuracy and stability conformed to the requirements. Results showed that there were no significant alterations in the plasma protein binding rate of taurine and edaravone, implying that the proposed combination therapy was pharmacologically feasible.
Keywords: edaravone; high-performance liquid chromatography; plasma protein binding rate; taurine; ultrafiltration.
Copyright © 2014 John Wiley & Sons, Ltd.