Tn6249, a new Tn6162 transposon derivative carrying a double-integron platform and involved with acquisition of the blaVIM-1 metallo-β-lactamase gene in Pseudomonas aeruginosa

Antimicrob Agents Chemother. 2015 Mar;59(3):1583-7. doi: 10.1128/AAC.04047-14. Epub 2014 Dec 29.

Abstract

The In70.2 integron platform appears to be a conserved structure involved in the dissemination of the blaVIM-1 metallo-β-lactamase gene in Pseudomonas aeruginosa. The genetic context of the In70.2 integron platform from P. aeruginosa VR-143/97, the VIM-1-producing index strain isolated in Italy in 1997, was fully characterized by a next-generation sequencing approach refined by conventional sequencing. The In70.2 integron platform from VR-143/97 was found to be associated with a defective Tn402-like transposon inserted into the urf2 gene of a Tn3 family transposon of an original structure, named Tn6249, which also carried a partially deleted mer operon and an In90 integron platform in a tail-to-tail orientation. Tn6249 was inserted into a PACS171b-like genomic island, which was in turn inserted into the endA gene of the Pseudomonas chromosomal backbone. Tn6249 showed a similar structure and a conserved location with respect to that of Tn6060, a Tn3 family transposon associated with In70.2 and carrying a double-integron platform, which was detected in a VIM-1-producing P. aeruginosa strain isolated in Australia in 2008. Both Tn6249 and Tn6060 are apparently derived from Tn6162, a mercury resistance transposon carrying an integron platform, which was found in P. aeruginosa isolates from different geographic locations. The conservation of the genetic context of Tn6249 and Tn6060 suggests an in situ evolution of these elements after the insertion of a Tn6162-like ancestor into the PACS171b-like genomic island (GI) present in the genome of a successful widespread P. aeruginosa clonal lineage.

MeSH terms

  • Australia
  • DNA Transposable Elements / genetics*
  • DNA, Bacterial / genetics
  • Integrons / genetics*
  • Pseudomonas aeruginosa / genetics*
  • beta-Lactamases / genetics*

Substances

  • DNA Transposable Elements
  • DNA, Bacterial
  • beta-Lactamases