Biotransformation and mass balance of the SGLT2 inhibitor empagliflozin in healthy volunteers

Xenobiotica. 2015;45(6):520-9. doi: 10.3109/00498254.2014.999141. Epub 2014 Dec 30.

Abstract

1. The absorption, biotransformation and excretion of empagliflozin, an SGLT2 inhibitor, were evaluated in eight healthy subjects following a single 50 mg oral dose of empagliflozin containing ∼100 µCi [(14)C]-empagliflozin. 2. Radioactivity was rapidly absorbed, with plasma levels peaking 1 h post-dose. Total exposure was lower in blood versus plasma, consistent with moderate (28.6-36.8%) red blood cell partitioning. Protein binding was 80.3-86.2%. 3. Most of the radioactive dose was recovered in urine (54.4%) and faeces (41.1%). Unchanged empagliflozin was the most abundant drug-related component in plasma, representing 75.5-77.4% of plasma radioactivity and 79.6% plasma radioactivity AUC0-12 h. Unchanged empagliflozin was the most abundant drug-related component in urine and faeces, representing 43.5% (23.7% of dose) and 82.9% (34.1% of dose) of radioactivity in urine and faeces, respectively. Six metabolites were identified in plasma: three glucuronide conjugates representing 4.7-7.1% of AUC0-12 h and three less abundant metabolites (<0.2-1.9% AUC0-12 h). The most abundant metabolites in urine were two glucuronide conjugates (7.8-13.2% of dose) and in faeces was a tetrahydrofuran ring-opened carboxylic acid metabolite (1.9% of dose). 4. To conclude, empagliflozin was rapidly absorbed and excreted primarily unchanged in urine and faeces. Unchanged parent was the major drug-related component in plasma. Metabolism was primarily via glucuronide conjugation.

Keywords: Absorption; excretion; metabolic pathway; metabolite; pharmacokinetics; radiolabeled.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Benzhydryl Compounds / administration & dosage*
  • Benzhydryl Compounds / pharmacokinetics*
  • Glucosides / administration & dosage*
  • Glucosides / pharmacokinetics*
  • Humans
  • Male
  • Middle Aged
  • Sodium-Glucose Transporter 2
  • Sodium-Glucose Transporter 2 Inhibitors*

Substances

  • Benzhydryl Compounds
  • Glucosides
  • SLC5A2 protein, human
  • Sodium-Glucose Transporter 2
  • Sodium-Glucose Transporter 2 Inhibitors
  • empagliflozin