Three-dimensional (3D) nanowire (NW) architectures are considered as superior electrode design for photovoltaic devices compared to NWs or nanoparticle systems in terms of improved large surface area and charge transport properties. In this paper, we report development of lead iodide perovskite solar cells based on a novel 3D TiO2 NW architectures. The 3D TiO2 nanostructure was synthesized via surface-reaction-limited pulsed chemical vapor deposition (SPCVD) technique that also implemented the Kirkendall effect for complete ZnO NW template conversion. It was found that the film thickness of 3D TiO2 can significantly influence the photovoltaic performance. Short-circuit current increased with the TiO2 length, while open-circuit voltage and fill factor decreased with the length. The highest power conversion efficiency (PCE) of 9.0% was achieved with ∼ 600 nm long 3D TiO2 NW structures. Compared to other 1D nanostructure arrays (TiO2 nanotubes, TiO2-coated ZnO NWs and ZnO NWs), 3D TiO2 NW architecture was able to achieve larger amounts of perovskite loading, enhanced light harvesting efficiency, and increased electron-transport property. Therefore, its PCE is 1.5, 2.3, and 2.8 times higher than those of TiO2 nanotubes, TiO2-coated ZnO NWs, and ZnO NWs, respectively. The unique morphological advantages, together with the largely suppressed hysteresis effect, make 3D hierarchical TiO2 a promising electrode selection in designing high-performance perovskite solar cells.
Keywords: CH3NH3PbI3; perovskite; solar cells; three-dimensional nanowires; titanium dioxide.