Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion

Evol Appl. 2014 Nov;7(9):984-98. doi: 10.1111/eva.12197. Epub 2014 Aug 15.

Abstract

Genetic biodiversity contributes to individual fitness, species' evolutionary potential, and ecosystem stability. Temporal monitoring of the genetic status and trends of wild populations' genetic diversity can provide vital data to inform policy decisions and management actions. However, there is a lack of knowledge regarding which genetic metrics, temporal sampling protocols, and genetic markers are sufficiently sensitive and robust, on conservation-relevant timescales. Here, we tested six genetic metrics and various sampling protocols (number and arrangement of temporal samples) for monitoring genetic erosion following demographic decline. To do so, we utilized individual-based simulations featuring an array of different initial population sizes, types and severity of demographic decline, and DNA markers [single nucleotide polymorphisms (SNPs) and microsatellites] as well as decline followed by recovery. Number of alleles markedly outperformed other indicators across all situations. The type and severity of demographic decline strongly affected power, while the number and arrangement of temporal samples had small effect. Sampling 50 individuals at as few as two time points with 20 microsatellites performed well (good power), and could detect genetic erosion while 80-90% of diversity remained. This sampling and genotyping effort should often be affordable. Power increased substantially with more samples or markers, and we observe that power of 2500 SNPs was nearly equivalent to 250 microsatellites, a result of theoretical and practical interest. Our results suggest high potential for using historic collections in monitoring programs, and demonstrate the need to monitor genetic as well as other levels of biodiversity.

Keywords: alpha diversity; conservation biology; convention on biological diversity; microsatellites; population genetic; simulation; single nucleotide polymorphism; temporal sampling.