Effect of resistive inspiratory and expiratory loading on cardio-respiratory interaction in healthy subjects

Annu Int Conf IEEE Eng Med Biol Soc. 2014:2014:710-3. doi: 10.1109/EMBC.2014.6943689.

Abstract

Resistive loading affects the breathing pattern and causes an increase in negative intrathoracic pressure. The aim of this paper was to study the influence inspiratory and expiratory loading on cardio-respiratory interaction. We recorded electrocardiogram (ECG) and respiratory inductance plethysmogram (RIP) in 11 healthy male subjects under normal and resistive loading conditions. The R-R time series were extracted from the ECG and respiratory phases were calculated from the ribcage and abdominal RIP using the Hilbert transform. Both the series were transformed into ternary symbol vectors based on the changes between two successive R-R intervals or respiratory phases, respectively. Subsequently, words of length `3 digits' were formed and the correspondence between words of the two series was determined to quantify cardio-respiratory interaction. Adding inspiratory and expiratory resistive loads resulted in an increase in inspiratory and expiatory time, respectively. Furthermore, we observed a significant increase in cardio-respiratory interaction during inspiratory resistive loading as compared to expiratory resistive loading (ribcage: 22.1±7.2 vs. 12.5±4.3 %, p<;0.0001; abdomen: 18.8±8.5 vs. 12.1±3.1 %, p<;0.05, respectively). Further studies may aid in better understanding the underlying physiological mechanisms and management of patients with breathing disorders.

MeSH terms

  • Adult
  • Electrocardiography
  • Exhalation / physiology*
  • Healthy Volunteers
  • Heart / physiology*
  • Heart Rate
  • Humans
  • Male
  • Plethysmography
  • Signal Processing, Computer-Assisted
  • Young Adult