Neurally mediated syncope (NMS) is a disorder of the autonomic regulation of postural tone, which is characterized by hypotension and/or bradycardia, resulting in cerebral hypo-perfusion and finally in a sudden loss of consciousness. Prediction of an impending NMS requires detection of pulse presence to derive heart rate (HR) as well as to assess the pulse strength (PS) related to systolic blood pressure (SBP) preferably from a single body location only. This paper analyses the basic feasibility of using a single accelerometer positioned above the common carotid artery to assess pulse strength and pulse rate towards NMS prediction. A physical model has been investigated to gain insights into expected signal morphologies and potential feature candidates vs. hemodynamic parameters such as SBP, pulse pressure (PP) and PR relevant for NMS detection. Model results are compared with first measurements obtained in a head-up tilt table test (HUTT) from a patient during impending syncope. We show that an accelerometer positioned at the carotid artery is a potential approach offering a valuable tool in syncope management.