Accuracy of oxygen saturation and total hemoglobin estimates in the neonatal brain using the semi-infinite slab model for FD-NIRS data analysis

Biomed Opt Express. 2014 Nov 14;5(12):4300-12. doi: 10.1364/BOE.5.004300. eCollection 2014 Dec 1.

Abstract

Frequency domain near-infrared spectroscopy (FD-NIRS) is a non-invasive method for measuring optical absorption in the brain. Common data analysis procedures for FD-NIRS data assume the head is a semi-infinite, homogenous medium. This assumption introduces bias in estimates of absorption (μa ), scattering ( [Formula: see text]), tissue oxygen saturation (StO2), and total hemoglobin (HbT). Previous works have investigated the accuracy of recovered μa values under this assumption. The purpose of this study was to examine the accuracy of recovered StO2 and HbT values in FD-NIRS measurements of the neonatal brain. We used Monte Carlo methods to compute light propagation through a neonate head model in order to simulate FD-NIRS measurements at 690 nm and 830 nm. We recovered μa , [Formula: see text], StO2, and HbT using common analysis procedures that assume a semi-infinite, homogenous medium and compared the recovered values to simulated values. Additionally, we characterized the effects of curvature via simulations on homogenous spheres of varying radius. Lastly, we investigated the effects of varying amounts of extra-axial fluid. Curvature induced underestimation of μa , [Formula: see text], and HbT, but had minimal effects on StO2. For the morphologically normal neonate head model, the mean absolute percent errors (MAPE) of recovered μa values were 12% and 7% for 690 nm and 830 nm, respectively, when source-detector separation was at least 20 mm. The MAPE for recovered StO2 and HbT were 6% and 9%, respectively. Larger relative errors were observed (∼20-30%), especially as StO2 and HbT deviated from normal values. Excess CSF around the brain caused very large errors in μa , [Formula: see text], and HbT, but had little effect on StO2.

Keywords: (170.3660) Light propagation in tissues; (170.5380) Physiology; (300.0300) Spectroscopy.