Intermediate-conductance calcium-activated potassium channel KCa3.1 and chloride channel modulate chemokine ligand (CCL19/CCL21)-induced migration of dendritic cells

Transl Res. 2015 Jul;166(1):89-102. doi: 10.1016/j.trsl.2014.11.010. Epub 2014 Dec 20.

Abstract

The role of ion channels is largely unknown in chemokine-induced migration in nonexcitable cells such as dendritic cells (DCs). Here, we examined the role of intermediate-conductance calcium-activated potassium channel (KCa3.1) and chloride channel (CLC3) in lymphatic chemokine-induced migration of DCs. The amplitude and kinetics of chemokine ligand (CCL19/CCL21)-induced Ca(2+) influx were associated with chemokine receptor 7 expression levels, extracellular-free Ca(2+) and Cl(-), and independent of extracellular K(+). Chemokines (CCL19 and CCL21) and KCa3.1 activator (1-ethyl-1,3-dihydro-2H-benzimidazol-2-one) induced plasma membrane hyperpolarization and K(+) efflux, which was blocked by 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole, suggesting that KCa3.1 carried larger conductance than the inward calcium release-activated calcium channel. Blockade of KCa3.1, low Cl(-) in the medium, and low dose of 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) impaired CCL19/CCL21-induced Ca(2+) influx, cell volume change, and DC migration. High doses of DIDS completely blocked DC migration possibly by significantly disrupting mitochondrial membrane potential. In conclusion, KCa3.1 and CLC3 are critical in human DC migration by synergistically regulating membrane potential, chemokine-induced Ca(2+) influx, and cell volume.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid / pharmacology
  • Benzimidazoles / pharmacology
  • Calcium Signaling
  • Cell Movement / drug effects
  • Cell Movement / immunology
  • Cell Movement / physiology
  • Chemokine CCL19 / metabolism
  • Chemokine CCL21 / metabolism
  • Chloride Channels / antagonists & inhibitors
  • Chloride Channels / metabolism*
  • Dendritic Cells / drug effects
  • Dendritic Cells / immunology
  • Dendritic Cells / physiology*
  • Humans
  • Intermediate-Conductance Calcium-Activated Potassium Channels / agonists
  • Intermediate-Conductance Calcium-Activated Potassium Channels / metabolism*
  • Membrane Potentials / drug effects
  • Pyrazoles / pharmacology
  • Receptors, CCR7 / metabolism
  • Translational Research, Biomedical

Substances

  • Benzimidazoles
  • CCL19 protein, human
  • CCL21 protein, human
  • CCR7 protein, human
  • Chemokine CCL19
  • Chemokine CCL21
  • Chloride Channels
  • ClC-3 channel
  • Intermediate-Conductance Calcium-Activated Potassium Channels
  • KCNN4 protein, human
  • Pyrazoles
  • Receptors, CCR7
  • TRAM 34
  • 1-ethyl-2-benzimidazolinone
  • 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid