Haze is a serious air pollution problem in China, especially in Beijing and surrounding areas, affecting visibility, public health and regional climate. In this study, the Weather Research and Forecasting-Chemistry (WRF-Chem) model was used to simulate PM2.5 (particulate matters with aerodynamic diameter≤2.5 μm) concentrations during the 2013 severe haze event in Beijing, and health impacts and health-related economic losses were calculated based on model results. Compared with surface monitoring data, the model results reflected pollution concentrations accurately (correlation coefficients between simulated and measured PM2.5 were 0.7, 0.4, 0.5 and 0.6 in Beijing, Tianjin, Xianghe and Xinglong stations, respectively). Health impacts assessments show that the PM2.5 concentrations in January might cause 690 (95% confidence interval (CI): (490, 890)) premature deaths, 45,350 (95% CI: (21,640, 57,860)) acute bronchitis and 23,720 (95% CI: (17,090, 29,710)) asthma cases in Beijing area. Results of the economic losses assessments suggest that the haze in January 2013 might lead to 253.8 (95% CI: (170.2, 331.2)) million US$ losses, accounting for 0.08% (95% CI: (0.05%, 0.1%)) of the total 2013 annual gross domestic product (GDP) of Beijing.
Keywords: Beijing; Economic losses; Haze; Health impacts; PM(2.5); WRF-Chem.
Copyright © 2015 Elsevier B.V. All rights reserved.