Objective: Corrected QT (QTc) interval predicts all-cause and cardiovascular mortality and may contribute to the increased mortality risk in rheumatoid arthritis (RA). Animal experiments have shown that proinflammatory cytokines [tumor necrosis factor (TNF)-α and interleukin 1 (IL-1)] can prolong cardiomyocyte action potential. We sought to determine whether elevations in circulating inflammatory cytokines were independently associated with QTc prolongation in patients with RA.
Methods: One hundred twelve patients [median age 62 (interquartile range 17) yrs; 80 women (71%)] from a well-characterized RA cohort underwent baseline 12-lead electrocardiograms for QT interval measurement and contemporary blood sampling to assess concentrations of inflammatory markers including C-reactive protein (CRP), TNF-α, and interleukins (IL-1α, IL-1β, IL-6, IL-10). QTc was calculated using the Bazett (QTBAZ = QT ÷ √RR) and Framingham Heart Study (QTFHS = QT + 0.154 × [1 - RR]) heart rate correction formulas.
Results: Inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-10) were positively correlated with QTBAZ (Spearman rank correlation coefficient rho = 0.199, 0.210, 0.222, 0.333; all p < 0.05). In multivariable regression analysis, these associations were all confounded by age except IL-10, where higher tertile groups were independently and positively associated with QTBAZ (β = 0.202, p = 0.023) and QTFHS (β = 0.223, p = 0.009) when compared to the lower tertile. CRP (per unit increase) was independently associated with QTBAZ (β = 0.278, p = 0.001), but not QTFHS.
Conclusion: To our knowledge, ours is the first study demonstrating a contemporary link between inflammatory cytokines and QT interval in humans. Our results suggest that a lower inflammatory burden may protect against QTc prolongation in patients with RA. However, further studies are required to confirm the effects of pro- and antiinflammatory cytokines on QTc interval.
Keywords: ARRHYTHMIA; CARDIOVASCULAR; CYTOKINES; INFLAMMATION; QTc INTERVAL; RHEUMATOID ARTHRITIS.