Ba2In2O5 brownmillerites in which the In site is progressively doped with Ce exhibit excellent oxygen reduction activity under alkaline conditions. Ce doping leads to structural changes advantageous for the reaction. Twenty-five percent doping retains the ordered structure of brownmillerite with alternate layers of tetrahedra and octahedra, whereas further increase in Ce concentration creates disorder. Structures with disordered oxygen atoms/vacancies are found to be better oxygen reduction reaction catalysts probably aided by isotropic ionic conduction, and Ba2In0.5Ce1.5O5+δ is the most active. This enhanced activity is correlated to the more symmetric Ce site coordination environment in this compound. Stoichiometric perovskite BaCeO3 with the highest concentration of Ce shows very poor activity emphasizing the importance of oxygen vacancies, which facilitate O2 adsorption, in tandem with catalytic sites in oxygen reduction reactions.
Keywords: Rietveld refinement; brownmillerite; fuel cell; oxygen disorder; oxygen reduction reaction.