Structure and properties of orthoborate glasses in the Eu2O3-(Sr,Eu)O-B2O3 quaternary

J Phys Chem B. 2015 Feb 19;119(7):3259-72. doi: 10.1021/jp5120465. Epub 2015 Feb 9.

Abstract

The structure and properties of melt-quenched glasses and partially crystallized samples from the borate series (1-2x)Eu2O3-x((Eu,Sr)O-B2O3) were investigated in the supermodified regime of x < 0.5, using Raman, infrared (IR), electron spin resonance (ESR), and UV-vis absorption and fluorescence spectroscopic techniques. ESR and optical spectroscopy showed that, despite the strongly reducing synthesis conditions, the Eu(2+)/Eu(3+) equilibrium remained shifted to the side of trivalent Eu(3+). Stable and transparent overmodified borate glasses were produced for compositions with x ≥ 0.36. Higher europium oxide concentrations resulted in precipitation of crystalline Eu2Sr3(BO3)4 and EuBO3 phases, as traced by X-ray diffraction. Raman and IR spectroscopy showed that the metaborate configuration which is present at x = 0.46 transforms gradually, with increasing Eu2O3 levels, into orthoborate [BO3](3-) triangular units. At higher europium oxide content (x ≤ 0.36), the presence of Eu(3+) supports the formation of orthoborate [BØ2O2](3-) tetrahedral species. These units organize into [B3O9](9-) rings, which exist in equilibrium with [BO3](3-) triangles. As a consequence, distinct variations can be observed also in the macroscopic properties such as density, glass transition temperature, refractive index, optical basicity, and oxygen polarizability. This observation confirms previous findings on manganese-strontium borates with high modification levels.