Orotic acid (OA) is an intermediate of pyrimidine nucleotide biosynthesis. Hereditary deficiencies in some enzymes associated with pyrimidine synthesis or the urea cycle induce OA accumulation, resulting in orotic aciduria. A link between patients with orotic aciduria and hypertension has been reported; however, the molecular mechanisms remain elusive. In this study, to elucidate the role of OA in vascular insulin resistance, we investigated whether OA induced endothelial dysfunction and hypertension. OA inhibited insulin- or metformin-stimulated nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation in human umbilical vein endothelial cells. A decreased insulin response by OA was mediated by impairment of the insulin-stimulated phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB/Akt) signaling pathway in cells overexpressing the p110-PI3K catalytic subunit. Impaired effects of metformin on eNOS phosphorylation and NO production were reversed in cells transfected with constitutively active AMP-activated protein kinase. Moreover, experimental induction of orotic aciduria in rats caused insulin resistance, measured as a 125% increase in the homeostasis model assessment, and hypertension, measured as a 25% increase in systolic blood pressure. OA increased the plasma concentration of endothelin-1 by 201% and significantly inhibited insulin- or metformin-induced vasodilation. A compromised insulin or metformin response on the Akt/eNOS and AMP-activated protein kinase/eNOS pathway was observed in aortic rings of OA-fed rats. Taken together, we showed that OA induces endothelial dysfunction by contributing to vascular and systemic insulin resistance that affects insulin- or metformin-induced NO production, leading to the development of hypertension.
Keywords: eNOS; endothelial dysfunction; hypertension; insulin resistance; orotic acid.
© The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: [email protected].