Ozone (O) is implicated in the natural source inventory of ClO, a hydrophilic salt that migrates to groundwater and interferes with the uptake of iodide in mammals, including humans. Tropospheric O is elevated in many urban and some rural areas in the United States and globally. We previously showed that controlled O exposure at near-ambient concentrations (up to 114 nL L, 12-h mean) did not increase foliar ClO. Under laboratory conditions, O has been shown to oxidize Cl to ClO. Plant tissues contain Cl and exhibit responses to O invoking redox reactions. As higher levels of O are associated with stratospheric incursion and with developing megacities, we have hypothesized that exposure of vegetation to such elevated O may increase foliar ClO. This would contribute to ClO in environments without obvious point sources. At these high O concentrations (up to 204 nL L, 12-h mean; 320 nL L maximum), we demonstrated an increase in the ClO concentration in surface soil that was linearly related to the O concentration. There was no relationship of foliar ClO with O exposure or dose (stomatal uptake). Accumulation of ClO varied among species at low O, but this was not related to soil surface ClO or to foliar ClO concentrations following exposure to O. These data extend our previous conclusions to the highest levels of plausible O exposure, that tropospheric O contributes to environmental ClO through interaction with the soil but not through increased foliar ClO.
Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.