The rise of antimicrobial resistance in human pathogenic bacteria has increased the necessity for the discovery of novel, yet unexplored antibacterial drug targets. Riboswitches, which are embedded in untranslated regions of bacterial messenger RNA (mRNA), represent such an interesting target structure. These RNA elements regulate gene expression upon binding to natural metabolites, second messengers, and inorganic ions, such as fluoride with high affinity and in a highly discriminative manner. Recently, efforts have been directed toward the identification of artificial riboswitch activators by establishing high-throughput screening assays, fragment-based screening, and structure-guided ligand design approaches. Emphasis in this review is placed on the special requirements and synthesis of new potential antibiotic drugs that target riboswitches in which dissimilarity is an important aspect in the design of potential lead compounds.