A new wheat-Thinopyrum translocation line CH13-21 was selected from the progenies derived from a cross between wheat-Th. intermedium partial amphiploid TAI7047 and wheat line Mianyang11. CH13-21 was characterized by using genomic in situ hybridization (GISH), multicolor-GISH (mc-GISH), multicolor-fluorescence in situ hybridization (mc-FISH) and chromosome-specific molecular markers. When inoculated with stripe rust and powdery mildew isolates, CH13-21 displayed novel resistance to powdery mildew and stripe rust which inherited from its Thinopyrum parent. The chromosomal counting analyses indicated that CH13-21 has 42 chromosomes, with normal bivalent pairing at metaphase I of meiosis. GISH probed by Th. intermedium genomic DNA showed that CH13-21 contained a pair of wheat-Th. intermedium translocated chromosomes. Sequential mc-FISH analyses probed by pSc119.2 and pAs1 clearly revealed that chromosome arm 6BS of CH13-21 was replaced by Thinopyrum chromatin in the translocation chromosome. The molecular markers analysis further confirmed that the introduced Th. intermedium chromatin in CH13-21 belonged to the long arm of homoeologous group 6 chromosome. Therefore, CH13-21 was a new T6BS.6Ai#1L compensating Robertsonian translocation line. It concludes that CH13-21 is a new genetic resource for wheat breeding programs providing novel variation for disease resistances.