Lipid prodrug nanocarriers in cancer therapy

J Control Release. 2015 Jun 28:208:25-41. doi: 10.1016/j.jconrel.2015.01.021. Epub 2015 Jan 21.

Abstract

Application of nanotechnology in the medical field (i.e., nanomedicine) plays an important role in the development of novel drug delivery methods. Nanoscale drug delivery systems can indeed be customized with specific functionalities in order to improve the efficacy of the treatments. However, despite the progresses of the last decades, nanomedicines still face important obstacles related to: (i) the physico-chemical properties of the drug moieties which may reduce the total amount of loaded drug; (ii) the rapid and uncontrolled release (i.e., burst release) of the encapsulated drug after administration and (iii) the instability of the drug in biological media where a fast transformation into inactive metabolites can occur. As an alternative strategy to alleviate these drawbacks, the prodrug approach has found wide application. The covalent modification of a drug molecule into an inactive precursor from which the drug will be freed after administration offers several benefits such as: (i) a sustained drug release (mediated by chemical or enzymatic hydrolysis of the linkage between the drug-moiety and its promoiety); (ii) an increase of the drug chemical stability and solubility and, (iii) a reduced toxicity before the metabolization occurs. Lipids have been widely used as building blocks for the design of various prodrugs. Interestingly enough, these lipid-derivatized drugs can be delivered through a nanoparticulate form due to their ability to self-assemble and/or to be incorporated into lipid/polymer matrices. Among the several prodrugs developed so far, this review will focus on the main achievements in the field of lipid-based prodrug nanocarriers designed to improve the efficacy of anticancer drugs. Gemcitabine (Pubchem CID: 60750); 5-fluorouracil (Pubchem CID: 3385); Doxorubicin (Pubchem CID: 31703); Docetaxel (Pubchem CID: 148124); Methotrexate (Pubchem CID: 126941); Paclitaxel (Pubchem CID: 36314).

Keywords: Cancer therapy; Drug delivery; Lipids; Nanomedicine; Prodrugs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / administration & dosage*
  • Antineoplastic Agents / adverse effects
  • Antineoplastic Agents / therapeutic use*
  • Delayed-Action Preparations
  • Drug Carriers
  • Drug Compounding
  • Drug Delivery Systems
  • Humans
  • Liposomes / chemistry*
  • Neoplasms / drug therapy*
  • Particle Size
  • Prodrugs / administration & dosage*
  • Prodrugs / adverse effects
  • Prodrugs / therapeutic use*

Substances

  • Antineoplastic Agents
  • Delayed-Action Preparations
  • Drug Carriers
  • Liposomes
  • Prodrugs