Expression of a multidrug resistance gene in human cancers

J Natl Cancer Inst. 1989 Jan 18;81(2):116-24. doi: 10.1093/jnci/81.2.116.

Abstract

Many cancers have been cured by chemotherapeutic agents. However, other cancers are intrinsically drug resistant, and some acquire resistance following chemotherapy. Cloning of the cDNA for the human MDR1 gene (also known as PGY1), which encodes the multidrug efflux protein P-glycoprotein, has made it possible to measure levels of MDR1 RNA in human cancers. We report the levels of MDR1 RNA in greater than 400 human cancers. MDR1 RNA levels were usually elevated in untreated, intrinsically drug-resistant tumors, including those derived from the colon, kidney, adrenal gland, liver, and pancreas, as well as in carcinoid tumors, chronic myelogenous leukemia in blast crisis, and cell lines of non-small cell carcinoma of the lung (NSCLC) with neuroendocrine properties. MDR1 RNA levels were occasionally elevated in other untreated cancers, including neuroblastoma, acute lymphocytic leukemia (ALL) in adults, acute nonlymphocytic leukemia (ANLL) in adults, and indolent non-Hodgkin's lymphoma. MDR1 RNA levels were also increased in some cancers at relapse after chemotherapy, including ALL, ANLL, breast cancer, neuroblastoma, pheochromocytoma, and nodular, poorly differentiated lymphoma. Many types of drug-sensitive and drug-resistant tumors, including NSCLC and melanoma, contained undetectable or low levels of MDR1 RNA. The consistent association of MDR1 expression with several intrinsically resistant cancers and the increased expression of the MDR1 gene in certain cancers with acquired drug resistance indicate that the MDR1 gene contributes to multidrug resistance in many human cancers. Thus, evaluation of MDR1 gene expression may prove to be a valuable tool in the identification of individuals whose cancers are resistant to specific agents. The information may be useful in designing or altering chemotherapeutic protocols in these patients.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Drug Resistance / genetics
  • Humans
  • Membrane Glycoproteins / genetics*
  • Neoplasm Recurrence, Local
  • Neoplasms / genetics*
  • RNA, Messenger / analysis*

Substances

  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Membrane Glycoproteins
  • RNA, Messenger