Co-expression of two polyhydroxyalkanoate synthase subunits from Synechocystis sp. PCC 6803 by cell-free synthesis and their specific activity for polymerization of 3-hydroxybutyryl-coenzyme A

Biochemistry. 2015 Feb 17;54(6):1401-7. doi: 10.1021/bi501560b. Epub 2015 Feb 6.

Abstract

Synechocystis sp. PCC 6803 is one of the most studied cyanobacteria for polyhydroxyalkanoate (PHA) synthesis, and its PHA synthase is known to consist of two subunits, namely, PhaC and PhaE. This report is the first to show the specific activity and related biochemical properties of PHA synthase from cyanobacteria. We have cloned and prepared a complex of PhaC and PhaE (PhaCE) from Synechocystis sp. PCC 6803 by the co-expression of PhaC and PhaE using a cell-free synthesis system. The specific activity of PhaCE was comparable to that of the class I PHA synthases, indicating that the low PHA productivity of cyanobacteria is not due to the activity of PHA synthase but may be caused by the other metabolic reactions related to PHA synthesis. The positive Hill coefficient of PhaCE as well as the size exclusion chromatography data indicates that dimeric PhaCE is a major active form that polymerizes 3-hydroxybutyryl-coenzyme A.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acyltransferases / genetics
  • Acyltransferases / metabolism*
  • Cell-Free System
  • Cloning, Molecular
  • Electrophoresis, Polyacrylamide Gel
  • Polymerization
  • Synechocystis / enzymology*

Substances

  • Acyltransferases
  • poly(3-hydroxyalkanoic acid) synthase