Lentiviral vectors have proved an effective method to deliver transgenes into the brain; however, they are often hampered by a lack of spread from the site of injection. Modifying the viral envelope with a portion of a rabies envelope glycoprotein can enhance spread in the brain by using long-range axon projections to facilitate retrograde transport. In this study, we generated two chimeric envelopes containing the extra-virion and transmembrane domain of rabies SADB19 or CVS-N2c with the intra-virion domain of vesicular stomatitis virus. Viral particles were packaged containing a green fluorescent protein reporter construct under the control of the phosphoglycerokinase promoter. Both vectors produced high-titer particles with successful integration of the glycoproteins into the particle envelope and significant transduction of neurons in vitro. Injection of the SADB19 chimeric viral vector into the lumbar spinal cord of adult mice mediated a strong preference for gene transfer to local neurons and axonal terminals, with retrograde transport to neurons in the brainstem, hypothalamus and cerebral cortex. Development of this vector provides a useful means to reliably target select populations of neurons by retrograde targeting.