Objectives: Cardiac C-arm computed tomography (CT) uses a standard C-arm fluoroscopy system rotating around the patient to provide CT-like images during interventional procedures without moving the patient to a conventional CT scanner. We hypothesized that C-arm CT can be used to visualize and quantify the size of perfusion defects and late enhancement resulting from a myocardial infarction (MI) using contrast-enhanced techniques similar to previous CT and magnetic resonance imaging studies.
Materials and methods: A balloon occlusion followed by reperfusion in a coronary artery was used to study acute and subacute MI in 12 swine. Electrocardiographically gated C-arm CT images were acquired the day of infarct creation (n = 6) or 4 weeks after infarct creation (n = 6). The images were acquired immediately after contrast injection, then at 1 minute, and every 5 minutes up to 30 minutes with no additional contrast. The volume of the infarct as measured on C-arm CT was compared against pathology.
Results: The volume of acute MI, visualized as a combined region of hyperenhancement with a hypoenhanced core, correlated well with pathologic staining (concordance correlation, 0.89; P < 0.0001; mean [SD] difference, 0.67 [2.98]cm3). The volume of subacute MI, visualized as a region of hyperenhancement, correlated well with pathologic staining at imaging times 5 to 15 minutes after contrast injection (concordance correlation, 0.82; P < 0.001; mean difference, -0.64 [1.94]cm3).
Conclusions: C-arm CT visualization of acute and subacute MI is possible in a porcine model, but improvement in the imaging technique is important before clinical use. Visualization of MI in the catheterization laboratory may be possible and could provide 3-dimensional images for guidance during interventional procedures.