The purpose of this study was to evaluate the accuracy of an algorithm based on the mass tensor model (MTM) for computerized 3D simulation of soft-tissue changes following bimaxillary osteotomy, and to identify patient and surgery-related factors that may affect the accuracy of the simulation. Sixty patients (mean age 26.0 years) who had undergone bimaxillary osteotomy, participated in this study. Cone beam CT scans were acquired pre- and one year postoperatively. The 3D rendered pre- and postoperative scans were matched. The maxilla and mandible were segmented and aligned to the postoperative position. 3D distance maps and cephalometric analyses were used to quantify the simulation error. The mean absolute error between the 3D simulation and the actual postoperative facial profile was 0.81 ± 0.22 mm for the face as a whole. The accuracy of the simulation (average absolute error ≤2 mm) for the whole face and for the upper lip, lower lip and chin subregions were 100%, 93%, 90% and 95%, respectively. The predictability was correlated with the magnitude of the maxillary and mandibular advancement, age and V-Y closure. It was concluded that the MTM-based soft tissue simulation for bimaxillary surgery was accurate for clinical use, though patients should be informed of possible variation in the predicted lip position.
Keywords: 3D simulation; Bimaxillary surgery; CBCT; Mass tensor model; Orthognathic surgery; Soft tissue simulation.
Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.