Conjugated linoleic acid (CLA), a group of minor fatty acids from ruminant origin, has long been recognized as a body fat lowering agent. Given the trans(t)10,cis(c)12-CLA well documented interference on lipolysis, we hypothesized for adipocytes altered permeation to glycerol when supplemented with this isomer. 3T3-L1 murine differentiated adipocytes were medium supplemented with linoleic acid (LA) and individual or combined c9,t11 and t10,c12-CLA isomers. Adipocytes treated with the t10,c12-CLA isomer and CLA mixture showed reduced triacylglycerols content (p < 0.001), re-enforcing the t10,c12-CLA as the anti-adipogenic CLA isomer. This finding was supported by decreased Δ9-desaturase index and adipocyte differentiation markers for the t10,c12-CLA group (p < 0.001), which suggest reduced lipogenesis and differentiation, respectively. The glycerol permeability was higher in all CLA treated cells compared to control and LA groups (p < 0.05). The increase in glycerol permeability agrees with both reduced triacylglycerols and non-osmotic cellular volume in the t10,c12-CLA and CLA mixture groups. Taken together, our data suggest that the increased adipocyte plasma membrane glycerol fluxes may be part of the anti-adipogenic response to CLA treatments.
Keywords: 3T3-L1 adipocytes; Adipogenesis; Conjugated linoleic acid isomers; Glycerol permeability; Plasma membrane.
Copyright © 2015 Elsevier Inc. All rights reserved.