Introduction: We developed a high throughput method for estimating smoker's mainstream smoke intake on a per-cigarette basis by analyzing discarded cigarette butts. This new method utilizes ultraviolet/visible (UV-Vis) spectrophotometric analysis of isopropanol-soluble smoke particulate matter extracted from discarded cigarette filters.
Methods: When measured under a wide range of smoking conditions for a given brand variant, smoking machine delivery of nicotine, benzene, polycyclic aromatic hydrocarbons, and tobacco-specific nitrosamines can be related to the overall filter extract absorbance at 360 nm. Once this relationship has been established, UV-Vis analysis of a discarded cigarette filter butt gives a quantitative measure of a smoker's exposure to these analytes.
Results: The measured mainstream smoke constituents correlated closely (correlation coefficients from 0.9303 to 0.9941) with the filter extract absorbance. These high correlations held over a wide range of smoking conditions for 2R4F research cigarettes as well as popular domestic cigarette brands sold in the United States.
Conclusions: This low cost, high throughput method is suitable for high volume analyses (hundreds of samples per day) because UV-Vis spectrophotometry, rather than mass spectrometry, is used for the cigarette filter butt analysis. This method provides a stable and noninvasive means for estimating mouth-level delivery of many mainstream smoke constituents. The ability to gauge the mouth-level intake of harmful chemicals and total mainstream smoke for cigarette smokers in a natural setting on a cigarette-by-cigarette basis can provide insights on factors contributing to morbidity and mortality from cigarette smoking, as well as insights on strategies related to smoking cessation.
Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.