In current clinical practice, the diagnosis of cervical cancer (CC) is mainly through the cervical screening followed by a necessary biopsy, but this method is labor consuming and expensive, and can only detect superficial lesions around the external cervical orifice. In contrast, photoacoustic imaging (PAI) is sensitive to the abnormal angiogenesis deep in the biological tissue, and may be capable for the intact scanning both around the external orifice and in cervical canal. In this paper, we for the first time put forward the photoacoustic diagnosis of CC. A total of 30 in-vitro experiments were carried out in this study, and the obtained depth maximum amplitude projection (DMAP) images were analyzed to evaluate the extent of the angiogenesis for different clinical stages of CC. Stronger absorption from the cervical lesions is observed relative to that of normal tissue. Paired t-test indicates that the difference in mean optical absorption (MOA) between normal tissue and cervical lesion has statistical significance with a confidential coefficient of 0.05. Statistical results also show that the MOAs of the cervical lesions are closely related to the severity of CC. These results imply that PAI may have great utility in the clinical diagnosis of CC.
Keywords: (170.2150) Endoscopic imaging; (170.3880) Medical and biological imaging; (170.5120) Photoacoustic imaging.