Viral and cellular proteins containing FGDF motifs bind G3BP to block stress granule formation

PLoS Pathog. 2015 Feb 6;11(2):e1004659. doi: 10.1371/journal.ppat.1004659. eCollection 2015 Feb.

Abstract

The Ras-GAP SH3 domain-binding proteins (G3BP) are essential regulators of the formation of stress granules (SG), cytosolic aggregates of proteins and RNA that are induced upon cellular stress, such as virus infection. Many viruses, including Semliki Forest virus (SFV), block SG induction by targeting G3BP. In this work, we demonstrate that the G3BP-binding motif of SFV nsP3 consists of two FGDF motifs, in which both phenylalanine and the glycine residue are essential for binding. In addition, we show that binding of the cellular G3BP-binding partner USP10 is also mediated by an FGDF motif. Overexpression of wt USP10, but not a mutant lacking the FGDF-motif, blocks SG assembly. Further, we identified FGDF-mediated G3BP binding site in herpes simplex virus (HSV) protein ICP8, and show that ICP8 binding to G3BP also inhibits SG formation, which is a novel function of HSV ICP8. We present a model of the three-dimensional structure of G3BP bound to an FGDF-containing peptide, likely representing a binding mode shared by many proteins to target G3BP.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Animals
  • Carrier Proteins* / chemistry
  • Carrier Proteins* / genetics
  • Carrier Proteins* / metabolism
  • Cell Line
  • Cricetinae
  • Cytoplasmic Granules / chemistry*
  • Cytoplasmic Granules / genetics
  • Cytoplasmic Granules / metabolism
  • DNA Helicases
  • DNA-Binding Proteins* / chemistry
  • DNA-Binding Proteins* / genetics
  • DNA-Binding Proteins* / metabolism
  • Herpesvirus 1, Human* / chemistry
  • Herpesvirus 1, Human* / genetics
  • Herpesvirus 1, Human* / metabolism
  • Humans
  • Models, Molecular*
  • Poly-ADP-Ribose Binding Proteins
  • Protein Binding
  • RNA Helicases
  • RNA Recognition Motif Proteins
  • Viral Proteins* / chemistry
  • Viral Proteins* / genetics
  • Viral Proteins* / metabolism

Substances

  • Carrier Proteins
  • DNA-Binding Proteins
  • ICP8 protein, Simplexvirus
  • Poly-ADP-Ribose Binding Proteins
  • RNA Recognition Motif Proteins
  • Viral Proteins
  • DNA Helicases
  • G3BP1 protein, human
  • RNA Helicases