The surgical treatment of distal anterior cerebral artery (DACA) aneurysms still presents a challenge for neurosurgeons because of their small size and their location in the depth of the narrow frontal interhemispheric fissure. This study aimed to investigate feasibility, safety, accuracy, and usefulness of electromagnetic (EM) navigation to aid clipping of DACA aneurysms. Eight patients (age between 2 and 68 years, mean age 49.8 years) with a DACA aneurysm underwent EM-guided neuronavigated microsurgery for clipping of the aneurysm. All patients underwent craniocervical 3D-CT angiography preoperatively. After planning the optimal approach and surgical trajectory avoiding opening of the frontal sinus, the head was fixed. Intraoperative screenshots were correlated with the microscopical view of the DACA aneurysms before clipping. EM-guided neuronavigation using CT angiography for DACA aneurysms enabled fast and accurate referencing of the patient and planning of a tailored craniotomy without opening of the frontal sinus. Intraoperative accuracy was highly reliable except in one instance due to dislocation of the dynamic reference frame (DRF). There was a good correlation between the 3D-CT angiography-based navigation data sets and the intraoperative vascular anatomy. In all patients, bridging veins were spared. The aid of EM neuronavigation was considered useful in all instances. EM-guided neuronavigation using CT angiography for surgery of DACA aneurysms is a useful tool optimizing the surgical approach directly to the aneurysm minimizing additional damage to the surrounding tissue during preparation of the aneurysm and the parent vessel.