Fluoride-induced reduction of Ag(I) cation leading to formation of silver mirrors and luminescent Ag-nanoparticles

J Am Chem Soc. 2015 Mar 4;137(8):2812-5. doi: 10.1021/ja512020w. Epub 2015 Feb 23.

Abstract

In aprotic solvents, Lewis basic F(-) anion reduces Lewis acidic Ag(I) cation to Ag(0), forming metallic silver mirrors on the inner surfaces of reaction vessels and luminescent Ag-nanoparticles (AgNPs) in supernatant solutions, which emit blue light upon UV irradiation. The F(-)-induced formation of silver mirrors and AgNPs was confirmed through X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), fluorescence spectroscopy, and mass spectrometry, whereas the Ag(I)-induced oxidation of F(-) to Ḟ radical, followed by its conversion to HF2(-) via H-abstraction and H-bonding, was evident from (19)F NMR spectroscopy. This redox reaction is deactivated in water, as the reducing power of hydrated F(-) diminishes drastically. Less Lewis basic Cl(-), Br(-), and I(-) ions do not reduce Ag(I) to Ag(0), instead they can only form Ag(I) halide precipitates irrespective of protic or aprotic solvents. The Ag-coated surfaces, luminescent AgNPs, and Ḟ radicals produced by this unprecedented redox reaction could be exploited as electrodes, light-emitting materials, and radical initiators, respectively.