Iron as an element is a double-edged sword, essential for living but also potentially toxic through the generation of oxidative stress. The recent study by Chen and colleagues in Critical Care reminds us of this elegantly. In a mouse model of acute lung injury, they showed that silencing hepcidin (the master regulator of iron metabolism) locally in airway epithelial cells aggravates lung injury by increasing the release of iron from alveolar macrophages, which in turn enhances pulmonary bacterial growth and reduces the macrophages' killing properties. This work underscores that hepcidin acts not only systematically (as a hormone) but also locally for iron metabolism regulation. This opens areas of research for sepsis treatment but also for iron deficiency or anaemia treatment, since the local and systemic iron regulation appear to be independent.