X-ray fluorescence-based differentiation of neck tissues in a bovine model: implications for potential intraoperative use

Phys Med. 2015 May;31(3):233-41. doi: 10.1016/j.ejmp.2015.01.012. Epub 2015 Feb 10.

Abstract

This study explores the possibility of using X-ray fluorescence (XRF)-based trace-element analysis for differentiation of various bovine neck tissues. It is motivated by the requirement for an intra-operative in-vivo method for identifying parathyroid glands, particularly beneficial in surgery in the central neck-compartment. Using a dedicated X-ray spectral analysis, we examined ex-vivo XRF spectra from various histologically verified fresh neck tissues from cow, which was chosen as the animal model; these tissues included fat, muscle, thyroid, parathyroid, lymph nodes, thymus and salivary gland. The data for six trace elements K, Fe, Zn, Br, Rb and I, provided the basis for tissue identification by using multi-parameter analysis of the recorded XRF spectra. It is shown that the combination of XRF signals from these elements is sufficient for a reliable tissue differentiation. The average total abundance of these trace elements was evaluated in each tissue type, including parathyroid and salivary gland for the first time. It is shown that some tissues can unequivocally be identified on the basis of the abundance of a single element, for example, iodine and zinc for the identification of thyroid gland and muscle, respectively.

Keywords: In-vivo; Intra-operative; Neck tissues; Tissue differentiation; Tissue trace elements; XRF.

MeSH terms

  • Algorithms
  • Animals
  • Cattle
  • Intraoperative Period
  • Neck*
  • Organ Specificity
  • Spectrometry, X-Ray Emission / methods*
  • Trace Elements / analysis
  • Trace Elements / chemistry

Substances

  • Trace Elements