Large genomic rearrangements (LGRs) account for at least 10% of the mutations in BRCA1 and 5% of BRCA2 mutations in outbred hereditary breast and ovarian cancer (HBOC) families. Data from some series suggest LGRs represent particularly penetrant mutations. 1,034 index cases from HBOC families underwent comprehensive BRCA1 and BRCA2 mutation testing, including screening for LGRs. The personal and family history of 254 identified mutation carriers were compared based on mutation type. Thirty-six LGRs were detected; 32/122 (26%) BRCA1 and 4/132 (3%) BRCA2 mutations. High risk features (bilateral breast cancer, diagnosis <40 years, ovarian cancer, male breast cancer) were more commonly associated with an LGR than a non-LGR mutation (p = 0.008), In families with a BRCA1 LGR the mean age of breast cancer diagnosis was younger than in families with a non-LGR BRCA1 mutation (42.5 vs. 46.1 years, p = 0.007). Across the entire group of mutation positive families the number of relatives affected by breast or ovarian cancer was increased [LGR 3.7 vs. non- LGR 2.8 per family, p value (adjusted for genotype) = 0.047]. Excluding index cases, the odds ratio for breast cancer in BRCA1 families with an LGR was 1.42 (95% CI 1.24-1.63) and for ovarian cancer 1.66 (95% CI 1.10-2.49). The increased cancer risk was reflected in significantly higher risk assessments by mutation prediction tools. LGRs are associated with higher cancer risks. If validated, LGRs could be included in cancer risk prediction tools to improve personalised cancer risk prediction estimates and may guide cost-minimising mutation screening strategies in some healthcare settings.