Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning

PLoS One. 2015 Feb 13;10(2):e0118165. doi: 10.1371/journal.pone.0118165. eCollection 2015.

Abstract

We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers
  • Blastocyst / cytology
  • Blastomeres / cytology*
  • Cell Differentiation
  • Cell Line
  • Cells, Cultured
  • Cloning, Organism*
  • Culture Media
  • Embryo Culture Techniques
  • Embryoid Bodies / cytology
  • Embryonic Stem Cells / cytology*
  • Embryonic Stem Cells / metabolism
  • Feeder Cells
  • Female
  • Oocytes / cytology*
  • Swine

Substances

  • Biomarkers
  • Culture Media

Grants and funding

This study was supported in part by grants from China Medical University Hospital (DMR-103-104), the National Science Council (NSC# 96-2313-B-005-013, NSC# 98-2628-B005-019-MY3, and NSC# 101-2313-B-005 -013 -MY3), Executive Yuan and the Ministry of Education, Taiwan, Republic of China, under the ATU plan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.