The insulin-like androgenic gland hormone (IAG) gene in crustaceans plays an important role in male sexual differentiation, metabolism, and growth. However, the upstream regulation of IAG signaling schemes remains poorly studied. In the present study, we cloned the 5' flanking sequence of IAG and full-length genomic sequences of gonad-inhibiting hormone (Mn-GIH), molt-inhibiting hormone (Mn-MIH) and crustacean hyperglycemic hormone (Mn-CHH) in Macrobrachium nipponense. We identified the transcription factor-binding sites in the 5' flanking sequence of IAG and investigated the exon-intron patterns of the three CHH superfamily genes. Each CHH superfamily gene consisted of two introns separating three exons. Mn-GIH and Mn-MIH shared the same intron insertion sites, which differed from Mn-CHH. We provided DNA-level evidence for the type definition. We also identified two cAMP response elements in the 5' untranslated region. We further investigated the regulatory relationships between Mn-GIH, Mn-MIH, and Mn-CHH and IAG at the transcriptional level by injection of double-stranded RNA (dsRNA). IAG transcription levels were significantly increased to 660.2%, 472.9%, and 112.4% of control levels in the Mn-GIH dsRNA, Mn-MIH dsRNA, and Mn-CHH dsRNA groups, respectively. The results clearly demonstrated that Mn-GIH and Mn-MIH, but not Mn-CHH, negatively regulate the expression of the IAG gene.
Keywords: Crustacean hyperglycemic hormone; Gonad-inhibiting hormone; Insulin-like androgenic gland hormone gene; Macrobrachium nipponense; Molt-inhibiting hormone.
Copyright © 2015 Elsevier B.V. All rights reserved.