Kefiran, a water-soluble heteropolysaccharide with molecular weight of 1.35×10(6)Da and a specific optical rotation of +64° (c 1.0, H2O), was isolated from kefir grains grown in cheese whey and further purified through DEAE-Sepharose XK26. Response surface methodology was employed to optimise the culture conditions for kefiran production from kefir grains to be lactose concentration 67 g/l, yeast extract 13g/l, pH 5.7 and temperature 24°C. Intrinsic viscosity was 5.84 dl/g using the Huggins extrapolation and 5.53 dl/g using the Kramer extrapolation. Monosaccharide analysis revealed that kefiran is composed of glucose (Glc) and galactose (Gal) in a relative molar ratio of 1.0:1.1. Its structural features were elucidated by a combination of FT-IR, methylation and GC-MS analysis, periodate oxidation-Smith degradation, partial acid hydrolysis and NMR spectroscopy ((1)H, (13)C and HMBC). The data obtained indicated that kefiran possessed a backbone of (1→6)-linked Glc, (1→3)-linked Gal, (1→4)-linked Gal, (1→4)-linked Glc and (1→2,6)-linked Gal, with a branch attached to O-2 of Gal residues and terminated with Glc residues.
Keywords: Cheese whey; Exopolysaccharide; Kefiran; Response surface methodology; Structural analysis.
Copyright © 2012 Elsevier Ltd. All rights reserved.