All-trans-retinoic acid (ATRA), the biologically active metabolite of vitamin A, is used medicinally for the treatment of hyperproliferative diseases and cancers. However, it is easily metabolized. In this study, the leading compound S8 was found based on virtual screening. To improve the activity of the leading compound S8, a series of novel S8 derivatives were designed, synthesized and evaluated for their in vitro biological activities. All of the prepared compounds showed that substituting the 5-chloro-3-methyl-1-phenyl-1H-pyrazole group for the 2-tertbutyl-5-methylfuran scaffold led to a clear increase in the biological activity. The most promising compound 32, with a CYP26A1 IC50 value of 1.36μM (compared to liarozole (IC50=2.45μM) and S8 (IC50=3.21μM)) displayed strong inhibitory and differentiation activity against HL60 cells. In addition, the study focused on the effect of β-phenylalanine, which forms the coordination bond with the heme of CYP26A1. These studies suggest that the compound 32 can be used as an appropriate candidate for future development.
Keywords: 3-Phenyl-2-(5-tertbutyl-2-methylfuran-3-carboxamido) propanoic acid derivatives; All-trans-retinoic acid (ATRA); CYP26A1; HL60 cells.
Copyright © 2014 Elsevier Ltd. All rights reserved.