Ophthalmological phenotype associated with homozygous null mutation in the NEUROD1 gene

Mol Vis. 2015 Feb 5:21:124-30. eCollection 2015.

Abstract

Purpose: NEUROD1 is a tissue-specific basic helix loop helix (bHLH) protein involved in the development and maintenance of the endocrine pancreas and neuronal elements. Loss of NEUROD1 causes ataxia, cerebellar hypoplasia, sensorineural deafness, and severe retinal dystrophy in mice. Heterozygous loss-of-function mutations in NEUROD1 have previously been described as a cause of maturity-onset diabetes of the young (MODY) and late-onset diabetes. To date, homozygous loss-of-function NEUROD1 mutations have only been detected in two patients. Both mutations caused permanent neonatal diabetes and severe neurologic defects, including visual impairment. However, a detailed ophthalmological phenotype of this novel syndrome has not yet been reported. Our aim was to characterize the ophthalmological phenotype associated with the previously reported homozygous c.427_428CT mutation in the NEUROD1 gene.

Methods: The female patient was investigated on multiple occasions between 2009 (age 14) and 2014 (age 19), including visual acuity testing, automated perimetry, funduscopy, anterior-segment imaging, optical coherence tomography of the posterior pole, standard full-field electroretinography, and fundus-autofluorescence imaging.

Results: The patient had nyctalopia, blurry vision, and visual field constriction from early childhood. Her best corrected visual acuity ranged between 20/25 and 15/25 during the investigation period. Perimetry showed concentric constriction of the visual field, sparing only the central 30 degrees in both eyes. The anterior segment did not show any morphological changes. Optical coherence tomography revealed total absence of the photoreceptor layer of the retina outside the fovea, where a discoid remnant of cone photoreceptors could be detected. Neither setting of the standard full-field electroretinography could detect any electrical response from the retina. Color fundus photos presented peripheral chorioretinal atrophy and central RPE mottling. A hyperreflective parafoveal ring was detected on fundus autofluorescent photos, a characteristic sign of hereditary retinal dystrophies.

Conclusions: To the best of our knowledge, this is the first report on the ophthalmological phenotype associating with a homozygous NEUROD1 null mutation in humans. Our results indicate that the loss of NEUROD1 has similar functional and anatomic consequences in the human retina as those described in mice. The present description can help the diagnosis of future cases and provide clues on the rate of disease progression.

Publication types

  • Case Reports
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Basic Helix-Loop-Helix Transcription Factors / deficiency
  • Basic Helix-Loop-Helix Transcription Factors / genetics*
  • Electroretinography
  • Female
  • Fovea Centralis / metabolism
  • Fovea Centralis / pathology
  • Fundus Oculi
  • Homozygote
  • Humans
  • Mutation*
  • Night Blindness / genetics*
  • Night Blindness / pathology
  • Ophthalmoscopy
  • Phenotype
  • Retinal Cone Photoreceptor Cells / metabolism
  • Retinal Cone Photoreceptor Cells / pathology*
  • Retinal Degeneration / genetics*
  • Retinal Degeneration / pathology
  • Retinal Rod Photoreceptor Cells / metabolism
  • Retinal Rod Photoreceptor Cells / pathology*
  • Visual Fields
  • Young Adult

Substances

  • Basic Helix-Loop-Helix Transcription Factors
  • NEUROD1 protein, human