Background: In tamoxifen-treated patients, breast cancer recurrence differs according to CYP2D6 genotype and endoxifen steady-state concentrations (Endx Css). The ¹³C-dextromethorphan breath test (DM-BT), labeled with ¹³C at the O-CH3 moiety, measures CYP2D6 enzyme activity. We sought to examine the ability of the DM-BT to identify known CYP2D6 genotypic poor metabolizers and examine the correlation between DM-BT and Endx Css.
Methods: DM-BT and tamoxifen pharmacokinetics were obtained at baseline, 3, and 6 months following tamoxifen initiation. Potent CYP2D6 inhibitors were prohibited. The correlation between baseline DM-BT with CYP2D6 genotype and Endx Css was determined. The association between baseline DM-BT (where values ≤0.9 is an indicator of poor in vivo CYP2D6 metabolism) and Endx Css (using values≤11.2 known to be associated with poorer recurrence free survival) was explored.
Results: A total of 91 patients were enrolled and 77 were eligible. CYP2D6 genotype was positively correlated with baseline, 3, and 6 months DM-BT (r ranging from 0.457-0. 60; P<0.001). Both CYP2D6 genotype (r=0.47, 0.56, P<0.0001), and baseline DM-BT (r=0.60, 0.54, P<0.001) were associated with 3 and 6 months Endx Css, respectively. Seven (78%) of nine patients with low (≤11.2 nmol/l) 3 month Endx Css also had low DM-BT (≤0.9) including 2/2 CYP2D6 PM/PM and 5/5 IM/PM. In contrast, one (2%) of 48 patients with a low DM-BT had Endx Css more than 11.2 nmol/l.
Conclusion: In patients not taking potent CYP2D6 inhibitors, DM-BT was associated with CYP2D6 genotype and 3 and 6 months Endx Css but did not provide better discrimination of Endx Css compared with CYP2D6 genotype alone. Further studies are needed to identify additional factors which alter Endx Css.