The chronic unpredictable mild stress (CUMS) model is a widely used experimental model of depression. Exogenous stress-induced neuronal cell death in the hippocampus is closely associated with the pathogenesis of depression. Excessive and prolonged endoplasmic reticulum (ER) stress triggers cell death. Hydrogen sulfide (H2S), the third endogenous signaling gasotransmitter, plays an important role in brain functions as a neuromodulator and a neuroprotectant. We hypothesized that the disturbance of endogenous H2S generation and ER stress in the hippocampus might be involved in CUMS-induced depression-like behaviors. Thus, the present study focused on whether CUMS disturbs the generation of endogenous H2S and up-regulates ER stress in the hippocampus and whether exogenous H2S prevents CUMS-induced depressive-like behaviors. Results showed that CUMS-treated rats exhibit depression-like behavior and hippocampal ER stress responses including up-regulated levels of glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein, and cleaved caspase-12 expression, while the endogenous generation of H2S in the hippocampus is suppressed in CUMS-treated rats. Furthermore, exogenous H2S prevents CUMS-induced depression-like behavior. These data indicated that CUMS-induced depression-like behaviors are related to the disturbance of endogenous H2S generation and ER stress in the hippocampus and suggested that endogenous H2S and ER stress are novel treatment targets of depression.
Keywords: chronic unpredictable mild stress; depression; endoplasmic reticulum stress; hydrogen sulfide.
© The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.