Objective: The human GABAAγ2(R43Q) mutation is associated with genetic epilepsy. Because of the role of γ-aminobutyric acid (GABA) in brain development, we asked whether this epilepsy mutation might affect excitability by changing cortical cytoarchitecture.
Methods: We used a mouse model harboring a heterozygous R43Q missense mutation in the GABAA receptor subunit γ2, as identified in a family with absence epilepsy and febrile seizures. Three-dimensional quantification of immunostained neurons (NeuN), inhibitory neurons (GABA), and inhibitory neuron subpopulations (calretinin, parvalbumin, and calbindin) was performed in fiducial somatosensory cortical columns of seizure-naive GABAAγ2(R43Q) and control mice.
Results: Of note, the densities of GABA-, calretinin-, parvalbumin-, and calbindin-containing neurons were increased, and somewhat perplexing, the ratio between putative excitatory and inhibitory neurons was decreased in GABAAγ2(R43Q) mice. Differences were detected in a layer-specific manner with greater overall effects in layers 2/3, 5, and 6, as compared with layers 1 and 4.
Conclusions: Our results suggest that the γ2(R43Q) mutation significantly affects cortical microcircuitry in the cortex of this model of human genetic epilepsy.
© 2015 American Academy of Neurology.