Angiosperms produce flowers for reproduction. Flower development is a multistep developmental process, beginning with the initiation of the floral meristems, followed by floral meristem identity specification and maintenance, organ primordia initiation, floral organ identity specification, floral stem cell termination and finally floral organ maturation. During flower development, each of a large number of genes is expressed in a spatiotemporally regulated manner. Underlying these molecular and phenotypic events are various genetic and epigenetic pathways, consisting of diverse transcription factors, chromatin-remodeling factors and signaling molecules. Over the past 30 years, genetic, biochemical and genomic assays have revealed the underlying genetic frameworks that control flower development. Here, we will review the transcriptional regulation of flower development in two model species: Arabidopsis thaliana and rice (Oryza sativa). We focus on epigenetic regulation that functions to co-ordinate transcription pathways in flower development.
Keywords: Arabidopsis; Epigenetic regulation; Floral homeotic protein; Flower development; Organ identity control; Rice.
© The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: [email protected].