The interleukin-1 (IL-1) family has been implicated in cellular responses to nanoparticles including carbon nanotubes (CNTs). IL-1α and β are key proinflammatory cytokines important in inflammatory and oxidative stress responses. The aim of this study was to characterize the role of IL-1 in cellular responses of CNTs in cells from IL-1α/β wild type (IL1-WT) mice and cells with reduced inflammatory potential from IL-1α/β deficient (IL1-KO) mice. Two multi-walled CNTs, CNT-1 containing long and thick fibers and CNT-2 containing short and thin fibers, were compared to UICC crocidolite asbestos fibers. Upon CNT exposure toxicity and apoptosis were affected differently in IL1-WT and IL1-KO cells. Upregulation of TNFα and IL-1α mRNA expression in IL1-WT cells was dependent on the type of CNT. On the contrary precursor IL-1α protein was downregulated after 24h. The mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) was activated in IL1-KO cells and regulated by CNTs, whereas no significant changes of extracellular regulated kinase (ERK) were observed when comparing IL1-WT and IL1-KO cells. In summary, the results presented here indicate that IL-1 contributes to the cellular and molecular effects of CNT exposure and that the type of CNT has an important effect on the cellular response.
Keywords: Apoptosis; CNT; IL-1; Inflammation; MAPK.
Copyright © 2015 Elsevier Ltd. All rights reserved.