Circulating Tumor Cells (CTCs) are a valuable prognostic factor in several solid tumors. By understanding the biological characteristics of CTCs we could better understand the biology of metastasis. CTCs usually adopt a dormant state that is believed to be a strategy to survive in extreme conditions. To enter a dormant state, CTCs undergo numerous phenotypic, genetic and functional mutations that significantly affect the efficacy of the therapies used to kill dormant CTCs. Hence, understanding the biological events involved in the dormancy process of CTCs would allow the identification of new therapeutic targets. Some experimental studies or preclinical models have explored these biological events, as well as the molecular factors that contribute to the maintenance of and release from dormancy. However, few studies have assessed the effects of anticancer therapies on dormant cells. This study reviews current the data currently available on cell dormancy mechanisms in prostate cancer, with a special focus on the functional, genetic and phenotypic plasticity of CTCs and their potential implications in the clinical and therapeutic management of prostate cancer.